抄録
Dynamical properties such as lock-in or out-of-lock condition of mutually coupled phase-locked loops (PLL's) are problems of practical interest. The present paper describes a study of such dynamical properties for mutually coupled PLL's incorporating lag filters and triangular phase detectors. The fourth-order ordinary differential equation (ODE) governing the mutually coupled PLL's is reduced to the equivalent third-order ODE due to the symmetry, where the system is analyzed in the context of nonlinear dynamical system theory. An understanding as to how and when lock-in can be obtained or out-of-lock behavior persists, is provided by the geometric structure of the invariant manifolds generated in the vector field from the thirdorder ODE. In addition, a connection to the recently developed theory on chaos and bifurcations from degenerated homoclinic points is also found to exist. The two-parameter diagrams of the one-homoclinic orbit are obtained by graphical solution of a set of nonlinear (finite dimensional) equations. Their graphical results useful in determining whether the system undergoes lockin or continues out-of-lock behavior, are verified by numerical simulations.
本文言語 | English |
---|---|
ページ(範囲) | 438-443 |
ページ数 | 6 |
ジャーナル | IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications |
巻 | 43 |
号 | 6 |
DOI | |
出版ステータス | Published - 1996 |
ASJC Scopus subject areas
- 電子工学および電気工学