Geometric Transformation: Tactile Data Augmentation for Robotic Learning

Gang Yan, Jun Yuyeol, Satoshi Funabashi, Tito Pradhono Tomo, Sophon Somlor, Alexander Schmitz, Shigeki Sugano

研究成果: Conference contribution

抄録

In recent years, the popularity of robotic tactile learning has grown with data-driven approaches being widely utilized for various tasks. It is generally acknowledged that a large and high quality dataset is critical for a data-driven approach. However, collecting such a dataset is challenging and time consuming with a real robot and tactile sensors. Instead, data augmentation techniques are widely used in visual-based learning because it could increase the size/quality of the dataset and improve the learning performance. In this letter, by considering properties of tactile data, we propose geometry transformation tactile data augmentation methods by adopting conventional image data augmentation methods. Our proposal is tested on two different tactile learning tasks, slip prediction and object recognition on a real robot. Two datasets are collected and our datasets are publicly available. The results show that our proposal could improve the learning accuracy additionally by up to 8.43%. Furthermore, our proposal outperforms conventional image data augmentation methods on tactile learning task overall.

本文言語English
ホスト出版物のタイトル2023 IEEE International Conference on Development and Learning, ICDL 2023
出版社Institute of Electrical and Electronics Engineers Inc.
ページ346-353
ページ数8
ISBN(電子版)9781665470759
DOI
出版ステータスPublished - 2023
イベント2023 IEEE International Conference on Development and Learning, ICDL 2023 - Macau, China
継続期間: 2023 11月 92023 11月 11

出版物シリーズ

名前2023 IEEE International Conference on Development and Learning, ICDL 2023

Conference

Conference2023 IEEE International Conference on Development and Learning, ICDL 2023
国/地域China
CityMacau
Period23/11/923/11/11

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識
  • 人間とコンピュータの相互作用
  • 制御と最適化

フィンガープリント

「Geometric Transformation: Tactile Data Augmentation for Robotic Learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル