Global existence and exponential stability of small solutions to nonlinear viscoelasticity

S. Kawashima*, Y. Shibata

*この研究の対応する著者

研究成果: Article査読

59 被引用数 (Scopus)

抄録

The global existence of smooth solutions to the equations of nonlinear hyperbolic system of 2nd order with third order viscosity is shown for small and smooth initial data in a bounded domain of n-dimensional Euclidean space with smooth boundary. Dirichlet boundary condition is studied and the asymptotic behaviour of exponential decay type of solutions as t tending to ∞ is described. Time periodic solutions are also studied. As an application of our main theorem, nonlinear viscoelasticity, strongly damped nonlinear wave equation and acoustic wave equation in viscous conducting fluid are treated.

本文言語English
ページ(範囲)189-208
ページ数20
ジャーナルCommunications in Mathematical Physics
148
1
DOI
出版ステータスPublished - 1992 8月
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「Global existence and exponential stability of small solutions to nonlinear viscoelasticity」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル