Global existence and optimal time-decay estimates of solutions to the generalized double dispersion equation on the framework of Besov spaces

Yuzhu Wang, Jiang Xu*, Shuichi Kawashima

*この研究の対応する著者

研究成果: Article査読

4 被引用数 (Scopus)

抄録

We investigate the initial value problem for the generalized double dispersion equation in any dimensions. Inspired by [28] for the hyperbolic system of first order PDEs, we develop Littlewood-Paley pointwise energy estimates for the dissipative wave equation of high-order. Furthermore, with aid of the frequency-localization Duhamel principle, we establish the global existence and optimal decay estimates of solutions in spatially critical Besov spaces. Our results could hold true for any dimensions (n≥1). Indeed, the proofs are different in case of high dimensions and low dimensions owing to interpolation tricks.

本文言語English
論文番号123455
ジャーナルJournal of Mathematical Analysis and Applications
481
1
DOI
出版ステータスPublished - 2020 1月 1

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Global existence and optimal time-decay estimates of solutions to the generalized double dispersion equation on the framework of Besov spaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル