Global stability of stationary solutions to a nonlinear diffusion equation in phytoplankton dynamics

Hitoshi Ishii*, Izumi Takagi

*この研究の対応する著者

研究成果: Article査読

37 被引用数 (Scopus)

抄録

We consider a nonlinear diffusion equation proposed by Shigesada and Okubo which describes phytoplankton growth dynamics with a selfs-hading effect. We show that the following alternative holds: Either (i) the trivial stationary solution which vanishes everywhere is a unique stationary solution and is globally stable, or (ii) the trivial solution is unstable and there exists a unique positive stationary solution which is globally stable. A criterion for the existence of positive stationary solutions is stated in terms of three parameters included in the equation.

本文言語English
ページ(範囲)1-24
ページ数24
ジャーナルJournal of Mathematical Biology
16
1
DOI
出版ステータスPublished - 1982 12月
外部発表はい

ASJC Scopus subject areas

  • 数学(その他)
  • 農業および生物科学(その他)

フィンガープリント

「Global stability of stationary solutions to a nonlinear diffusion equation in phytoplankton dynamics」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル