抄録
This paper is concerned with the asymptotic behavior toward the rarefaction wave of the solution of a one-dimensional barotropic model system for compressible viscous gas. We assume that the initial data tend to constant states at x=±∞, respectively, and the Riemann problem for the corresponding hyperbolic system admits a weak continuous rarefaction wave. If the adiabatic constant γ satisfies 1≦γ≦2, then the solution is proved to tend to the rarefaction wave as t→∞ under no smallness conditions of both the difference of asymptotic values at x=±∞ and the initial data. The proof is given by an elementary L2-energy method.
本文言語 | English |
---|---|
ページ(範囲) | 325-335 |
ページ数 | 11 |
ジャーナル | Communications in Mathematical Physics |
巻 | 144 |
号 | 2 |
DOI | |
出版ステータス | Published - 1992 2月 |
ASJC Scopus subject areas
- 統計物理学および非線形物理学
- 物理学および天文学(全般)
- 数理物理学