Global well-posedness and time-decay of solutions for the compressible Hall-magnetohydrodynamic system in the critical Besov framework

Shuichi Kawashima, Ryosuke Nakasato*, Takayoshi Ogawa

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We consider the global existence of solution for the initial value problem for the compressible Hall-magnetohydrodynamic system in the whole space R3. The system consists of a hyperbolic-parabolic system of partial differential equations of the conservation laws type with non-symmetric diffusion. We show the existence of solution as a perturbation from a constant equilibrium state (ρ¯,0,B¯), where ρ¯>0 is a constant density, 0∈R3 is the zero velocity and B¯∈R3 is a constant magnetic field. The time-decay of the solution in the Besov spaces is also established. Our results show the pointwise estimate of the solution in the Fourier space for the linearized Hall-MHD system that related to the result obtained by Umeda–Kawashima–Shizuta [33] for a general class of linear symmetric hyperbolic-parabolic systems with symmetric diffusion. We utilize a systematic use of the product estimates in the Chemin–Lerner spaces and apply the energy method due to Matsumura–Nishida [27].

本文言語English
ページ(範囲)1-64
ページ数64
ジャーナルJournal of Differential Equations
328
DOI
出版ステータスPublished - 2022 8月 15

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Global well-posedness and time-decay of solutions for the compressible Hall-magnetohydrodynamic system in the critical Besov framework」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル