Global well-posedness for the incompressible Hall-magnetohydrodynamic system in critical Fourier–Besov spaces

Ryosuke Nakasato*

*この研究の対応する著者

研究成果: Article査読

抄録

We investigate the initial value problem for the incompressible magnetohydrodynamic system with the Hall-effect in the whole space R3. In this paper, we focus on a solution as a perturbation from a constant equilibrium state (0 , B¯) , where 0 ∈ R3 is the zero velocity and B¯ ∈ R3 is a constant magnetic field. Our goal is to establish the existence of a global-in-time solution in Lp-type critical Fourier–Besov spaces. In order to prove our results, we establish various type product estimates in space-time mixed spaces and smoothing estimates for the solution of the linear equation, which has a non-symmetric diffusion derived from the Hall-term. Our results hold in the case of small initial data. However, the result can cover initial velocity fields whose high frequency part is highly oscillating.

本文言語English
論文番号20
ジャーナルJournal of Evolution Equations
22
1
DOI
出版ステータスPublished - 2022 3月
外部発表はい

ASJC Scopus subject areas

  • 数学(その他)

フィンガープリント

「Global well-posedness for the incompressible Hall-magnetohydrodynamic system in critical Fourier–Besov spaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル