Gravitational waves in expanding universe with cosmological constant

Hisa Aki Shinkai*, Kei Ichi Maeda

*この研究の対応する著者

研究成果: Article査読

抄録

To investigate the cosmic no hair conjecture, we numerically analyze 1-dimensional inhomogeneous space-times. The spacetimes we study are to be a plane symmetric and vacuum with a positive cosmological constant. Initially we set the inhomogeneities due to gravitational pulse waves and examine the time evolution of the Riemann invariant (3)Rijkl (3)Rijkl and Weyl curvature Cμνρ{variant}σ on each hypersurfaces. We find a temporal growth of the curvature in the interacting regions of waves, but the expansion of the universe later overcomes this effects. Even if we set large Riemann invariant and/or small width scale of inhomogeneity on the initial hypersurface, the nonlinearity of the gravity has little effect and the spacetime results in a flat de-Sitter spacetime.

本文言語English
ページ(範囲)449-452
ページ数4
ジャーナルVistas in Astronomy
37
C
DOI
出版ステータスPublished - 1993

ASJC Scopus subject areas

  • 天文学と天体物理学

フィンガープリント

「Gravitational waves in expanding universe with cosmological constant」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル