Ground State Solutions for the Nonlinear Choquard Equation with Prescribed Mass

Silvia Cingolani*, Kazunaga Tanaka

*この研究の対応する著者

研究成果: Chapter

11 被引用数 (Scopus)

抄録

We study existence of radially symmetric solutions for the nonlocal problem: where (formula presetned) a unknown Lagrange multiplier. Using a Lagrange formulation of the problem (1 ), we develop new deformation arguments under a version of the Palais-Smale condition introduced in the recent papers (Hirata and Tanaka, Adv Nonlinear Stud 19:263–290, 2019; Ikoma and Tanaka, Adv Differ Equ 24:609–646, 2019) and we prove the existence of a ground state solution for the nonlinear Choquard equation with prescribed mass, when F satisfies Berestycki-Lions type conditions.

本文言語English
ホスト出版物のタイトルSpringer INdAM Series
出版社Springer-Verlag Italia s.r.l.
ページ23-41
ページ数19
DOI
出版ステータスPublished - 2021

出版物シリーズ

名前Springer INdAM Series
47
ISSN(印刷版)2281-518X
ISSN(電子版)2281-5198

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Ground State Solutions for the Nonlinear Choquard Equation with Prescribed Mass」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル