Growth Mechanism of Columnar Grains in FePt-C Granular Films for HAMR Media Processed by Compositionally Graded Sputtering

H. Pandey, A. Perumal, J. Wang, Y. K. Takahashi*, K. Hono

*この研究の対応する著者

研究成果: Article査読

3 被引用数 (Scopus)

抄録

The optimization of nanogranular FePt-C films for heat-assisted magnetic recording is carried out by varying processing conditions for compositionally graded sputtering. Microstructures and magnetic properties of the films were studied for various thicknesses ranging from 2 to 12 nm to observe the growth steps of the films. An excellent in-plane nanogranular microstructure is obtained for the films of thickness ≥8 nm. Below 6 nm in thickness, the grains are random in shape and the presence of fine grains deteriorates the magnetic properties on account of poor L10 ordering. During the nucleation and grain growth stages, the grain size does not change too much with increasing the film thickness. But, the coarsening of FePt grains occurs and the aspect ratio of the FePt grain changes in the films of thickness ≥8 nm. We achieve a minimum grain size of 6.2 nm having an aspect ratio of 1.9 with a large perpendicular coercivity of 3.9 T for ∼ 12 nm thick FePt-C films.

本文言語English
論文番号7346463
ジャーナルIEEE Transactions on Magnetics
52
7
DOI
出版ステータスPublished - 2016 7月
外部発表はい

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 電子工学および電気工学

フィンガープリント

「Growth Mechanism of Columnar Grains in FePt-C Granular Films for HAMR Media Processed by Compositionally Graded Sputtering」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル