抄録
We present a sub-sentential alignment algorithm that relies on association scores between words or phrases. This algorithm is inspired by previous work on alignment by recursive binary segmentation and on document clustering. We evaluate the resulting alignments on machine translation tasks and show that we can obtain state-of-the-art results, with gains up to more than 4 BLEU points compared to previous work, with a method that is simple, independent of the size of the corpus to be aligned, and directly computes symmetric alignments. This work also provides new insights regarding the use of "heuristic" alignment scores in statistical machine translation.
本文言語 | English |
---|---|
ページ | 279-286 |
ページ数 | 8 |
出版ステータス | Published - 2012 |
イベント | 16th Annual Conference of the European Association for Machine Translation, EAMT 2012 - Trento, Italy 継続期間: 2012 5月 28 → 2012 5月 30 |
Other
Other | 16th Annual Conference of the European Association for Machine Translation, EAMT 2012 |
---|---|
国/地域 | Italy |
City | Trento |
Period | 12/5/28 → 12/5/30 |
ASJC Scopus subject areas
- 言語および言語学
- 人間とコンピュータの相互作用
- ソフトウェア