High Frequency Weighted Resolvent Estimates for the Dirichlet Laplacian in the Exterior Domain

Vladimir Georgiev, Mario Rastrelli*

*この研究の対応する著者

研究成果: Conference contribution

抄録

In this paper, we want to present several resolvent estimates for the Dirichlet Laplacian in exterior domain. The estimates evaluate a weighted L2 norm with a weight measured by a negative power of the distance from the boundary. We consider an exterior domain Ω, that is the complementary of a compact in Rn, and the inhomogeneous Helmotz equation on it. If the exterior domain is non-trapping, there are cut-off resolvent estimates without weights. Our main result is that we can improve the estimates putting the weights. The main idea is the polar change of coordinates, where r=d(x,∂Ω), that allows us to use the Hardy inequality close to the boundary of the domain. Kato smoothing estimate is obtained as a consequence of the weighted cut-off resolvent estimates.

本文言語English
ホスト出版物のタイトルNew Trends in the Applications of Differential Equations in Sciences - NTADES 2023
編集者Angela Slavova
出版社Springer
ページ107-117
ページ数11
ISBN(印刷版)9783031532115
DOI
出版ステータスPublished - 2024
イベント10th International Conference on New Trends in the Applications of Differential Equations in Sciences, NTADES 2023 - Saints Constantine and Helena, Bulgaria
継続期間: 2023 7月 172023 7月 20

出版物シリーズ

名前Springer Proceedings in Mathematics and Statistics
449
ISSN(印刷版)2194-1009
ISSN(電子版)2194-1017

Conference

Conference10th International Conference on New Trends in the Applications of Differential Equations in Sciences, NTADES 2023
国/地域Bulgaria
CitySaints Constantine and Helena
Period23/7/1723/7/20

ASJC Scopus subject areas

  • 数学一般

フィンガープリント

「High Frequency Weighted Resolvent Estimates for the Dirichlet Laplacian in the Exterior Domain」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル