TY - JOUR
T1 - High-performance N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide/poly(vinylidene fluoride-hexafluoropropylene) gel polymer electrolytes for lithium metal batteries
AU - Pan, Xiaona
AU - Liu, Tianyi
AU - Kautz, David J.
AU - Mu, Linqin
AU - Tian, Chixia
AU - Long, Timothy Edward
AU - Yang, Peixia
AU - Lin, Feng
PY - 2018/11/1
Y1 - 2018/11/1
N2 - Ionically conductive polymer electrolytes represent a class of safe and environment-friendly electrolytes for next-generation alkali metal batteries. Understanding the interplay between composition-driven interfacial processes and battery performance can fundamentally inform the design of polymer electrolytes for practical applications. In this study, we fabricate lithium metal batteries based on transparent free-standing ionic liquid gel polymer electrolytes (ILGPEs) and LiFePO4 cathodes. We develop the ILGPEs using a composite of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13TFSI), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). A thorough compositional optimization shows that the lithium ion conductivity of the ILGPE increases with the increase of PP13TFSI and LiTFSI, reaching maxima of 1.3 mS cm−1 at 23 °C and 5.82 mS cm−1 at 80 °C when the ILGPE contains 60 wt% PP13TFSI and 20 wt% LiTFSI. The optimized ILGPE exhibits excellent interfacial stability against the lithium metal, as signified by the stable interfacial resistance upon long-term storage. The LiFePO4|ILGPE|Li cells can deliver superior battery performance with a practical capacity approaching 89.5% of the theoretical capacity and capacity retention of 95.0% after 200 cycles. The formation of the electrode–electrolyte interphases takes place primarily during the initial cycles, which likely accounts for the activation period observed in LiFePO4|ILGPE|Li cells.
AB - Ionically conductive polymer electrolytes represent a class of safe and environment-friendly electrolytes for next-generation alkali metal batteries. Understanding the interplay between composition-driven interfacial processes and battery performance can fundamentally inform the design of polymer electrolytes for practical applications. In this study, we fabricate lithium metal batteries based on transparent free-standing ionic liquid gel polymer electrolytes (ILGPEs) and LiFePO4 cathodes. We develop the ILGPEs using a composite of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13TFSI), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). A thorough compositional optimization shows that the lithium ion conductivity of the ILGPE increases with the increase of PP13TFSI and LiTFSI, reaching maxima of 1.3 mS cm−1 at 23 °C and 5.82 mS cm−1 at 80 °C when the ILGPE contains 60 wt% PP13TFSI and 20 wt% LiTFSI. The optimized ILGPE exhibits excellent interfacial stability against the lithium metal, as signified by the stable interfacial resistance upon long-term storage. The LiFePO4|ILGPE|Li cells can deliver superior battery performance with a practical capacity approaching 89.5% of the theoretical capacity and capacity retention of 95.0% after 200 cycles. The formation of the electrode–electrolyte interphases takes place primarily during the initial cycles, which likely accounts for the activation period observed in LiFePO4|ILGPE|Li cells.
KW - Freestanding
KW - Interfacial chemistry
KW - Ionic conductivity
KW - Ionic liquid gel polymer electrolyte
KW - Lithium metal battery
UR - http://www.scopus.com/inward/record.url?scp=85054281506&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054281506&partnerID=8YFLogxK
U2 - 10.1016/j.jpowsour.2018.09.080
DO - 10.1016/j.jpowsour.2018.09.080
M3 - Article
AN - SCOPUS:85054281506
SN - 0378-7753
VL - 403
SP - 127
EP - 136
JO - Journal of Power Sources
JF - Journal of Power Sources
ER -