TY - JOUR
T1 - High-pressure x-ray diffraction studies of the nanostructured transparent vitroceramic medium K2O-SiO2-Ga2O3
AU - Lipinska-Kalita, E.
AU - Chen, B.
AU - Kruger, B.
AU - Ohki, Y.
AU - Murowchick, J.
AU - Gogol, P.
PY - 2003/7/15
Y1 - 2003/7/15
N2 - Synchrotron-radiation-based, energy-dispersive x-ray-diffraction studies have been performed on a composite containing nanometer-size aggregates embedded in an amorphous matrix, in the pressure range from ambient up to 15 GPa. The optically transparent material containing β-Ga2O3 nanocrystals was developed by the controlled crystallization of a silicon oxide-based amorphous precursor. Transmission electron microscopy and conventional x-ray-diffraction techniques allowed estimating the mean size of a single-crystalline phase to be 14.8±1.9 nm, distributed homogeneously in an amorphous medium. The pressure-driven evolution of x-ray-diffraction patterns indicated a progressive densification of the nanocrystalline phase. A structural modification corresponding to a pressure-induced coordination change of the gallium atoms was evidenced by the appearance of new diffraction peaks. The overall changes of x-ray-diffraction patterns indicated a β-Ga2O3 to α-Ga2O3 phase transformation. The low- to high-density phase transition was initiated at around 6 GPa and not completed in the pressure range investigated. A Birch-Murnaghan fit of the unit-cell volume change as a function of pressure yielded a zero-pressure bulk modulus, K0, for the nanocrystalline phase of 191±4.9 GPa and its pressure derivative, K0′=8.3±0.9.
AB - Synchrotron-radiation-based, energy-dispersive x-ray-diffraction studies have been performed on a composite containing nanometer-size aggregates embedded in an amorphous matrix, in the pressure range from ambient up to 15 GPa. The optically transparent material containing β-Ga2O3 nanocrystals was developed by the controlled crystallization of a silicon oxide-based amorphous precursor. Transmission electron microscopy and conventional x-ray-diffraction techniques allowed estimating the mean size of a single-crystalline phase to be 14.8±1.9 nm, distributed homogeneously in an amorphous medium. The pressure-driven evolution of x-ray-diffraction patterns indicated a progressive densification of the nanocrystalline phase. A structural modification corresponding to a pressure-induced coordination change of the gallium atoms was evidenced by the appearance of new diffraction peaks. The overall changes of x-ray-diffraction patterns indicated a β-Ga2O3 to α-Ga2O3 phase transformation. The low- to high-density phase transition was initiated at around 6 GPa and not completed in the pressure range investigated. A Birch-Murnaghan fit of the unit-cell volume change as a function of pressure yielded a zero-pressure bulk modulus, K0, for the nanocrystalline phase of 191±4.9 GPa and its pressure derivative, K0′=8.3±0.9.
UR - http://www.scopus.com/inward/record.url?scp=85039002883&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85039002883&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.68.035209
DO - 10.1103/PhysRevB.68.035209
M3 - Article
AN - SCOPUS:85039002883
SN - 1098-0121
VL - 68
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 11
ER -