High salinity leads to accumulation of soil organic carbon in mangrove soil

Morimaru Kida, Mitsutoshi Tomotsune, Yasuo Iimura, Kazutoshi Kinjo, Toshiyuki Ohtsuka, Nobuhide Fujitake*

*この研究の対応する著者

研究成果: Article査読

34 被引用数 (Scopus)

抄録

Although mangrove forests are one of the most well-known soil organic carbon (SOC) sinks, the mechanism underlying SOC accumulation is relatively unknown. High net primary production (NPP) along with the typical bottom-heavy biomass allocation and low soil respiration (SR) have been considered to be responsible for SOC accumulation. However, an emerging paradigm postulates that SR is severely underestimated because of the leakage of dissolved inorganic carbon (DIC) in groundwater. Here we propose a simple yet unique mechanism for SOC accumulation in mangrove soils. We conducted sequential extraction of water extractable organic matter (WEOM) from mangrove soils using ultrapure water and artificial seawater, respectively. A sharp increase in humic substances (HS) concentration was observed only in the case of ultrapure water, along with a decline in salinity. Extracted WEOM was colloidal, and ≤70% of it re-precipitated by the addition of artificial seawater. These results strongly suggest that HS is selectively flocculated and maintained in the mangrove soils because of high salinity. Because sea salts are a characteristic of any mangrove forest, high salinity may be one of mechanisms underlying SOC accumulation in mangrove soils.

本文言語English
ページ(範囲)51-55
ページ数5
ジャーナルChemosphere
177
DOI
出版ステータスPublished - 2017
外部発表はい

ASJC Scopus subject areas

  • 環境化学
  • 化学 (全般)

フィンガープリント

「High salinity leads to accumulation of soil organic carbon in mangrove soil」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル