TY - JOUR
T1 - High-temperature fabrication of Ag(In,Ga)Se2 thin films for applications in solar cells
AU - Zhang, Xianfeng
AU - Yamada, Akira
AU - Kobayashi, Masakazu
N1 - Publisher Copyright:
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2017/10
Y1 - 2017/10
N2 - Molecular beam epitaxy was used to fabricate Ag(In,Ga)Se2 (AIGS) thin films. To improve the diffusion of Ag, high-temperature deposition and high-temperature annealing methods were applied to fabricate AIGS films. The as-grown AIGS thin films were then used to make AIGS solar cells. We found that grain size and crystallinity of AIGS films were considerably improved by increasing the deposition and annealing temperature. For high-temperature deposition, temperatures over 600 °C led to decomposition of the AIGS film, desorption of In, and deterioration of its crystallinity. The most appropriate deposition temperature was 590 °C and a solar cell with a power conversion efficiency of 4.1% was obtained. High-temperature annealing of the AIGS thin films showed improved crystallinity as annealing temperature was increased and film decomposition and In desorption were prevented. A solar cell based on this film showed the highest conversion efficiency of 6.4% when annealed at 600 °C. When the annealing temperature was further increased to 610 °C, the performance of the cell deteriorated due to loss of the out-of-plane Ga gradient.
AB - Molecular beam epitaxy was used to fabricate Ag(In,Ga)Se2 (AIGS) thin films. To improve the diffusion of Ag, high-temperature deposition and high-temperature annealing methods were applied to fabricate AIGS films. The as-grown AIGS thin films were then used to make AIGS solar cells. We found that grain size and crystallinity of AIGS films were considerably improved by increasing the deposition and annealing temperature. For high-temperature deposition, temperatures over 600 °C led to decomposition of the AIGS film, desorption of In, and deterioration of its crystallinity. The most appropriate deposition temperature was 590 °C and a solar cell with a power conversion efficiency of 4.1% was obtained. High-temperature annealing of the AIGS thin films showed improved crystallinity as annealing temperature was increased and film decomposition and In desorption were prevented. A solar cell based on this film showed the highest conversion efficiency of 6.4% when annealed at 600 °C. When the annealing temperature was further increased to 610 °C, the performance of the cell deteriorated due to loss of the out-of-plane Ga gradient.
KW - Ag(In,Ga)Se
KW - molecular beam epitaxy
KW - solar cells
KW - thin films
UR - http://www.scopus.com/inward/record.url?scp=85026402980&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85026402980&partnerID=8YFLogxK
U2 - 10.1002/pssa.201700042
DO - 10.1002/pssa.201700042
M3 - Article
AN - SCOPUS:85026402980
SN - 1862-6300
VL - 214
JO - Physica Status Solidi (A) Applications and Materials Science
JF - Physica Status Solidi (A) Applications and Materials Science
IS - 10
M1 - 1700042
ER -