Higher coverage of carboxylic acid groups on oxidized single crystal diamond (001)

Xianfen Wang*, A. Rahim Ruslinda, Yuichiro Ishiyama, Yoko Ishii, Hiroshi Kawarada


研究成果: Article査読

39 被引用数 (Scopus)


The effects of crystal orientation to the surface chemistry of single crystal diamond (001) and (111) were investigated after wet chemical oxidation. Direct carboxylation has been successfully achieved via wet chemical oxidation on native diamond (001) and (111) surface with distinguished portions of carboxylic acid groups (-COOH). High resolution X-ray photoelectron spectroscopy (XPS) analysis revealed that various kinds of chemical groups including both single and double oxygen-related components were covalently functionalized onto the single crystal diamond. The percentages of -COOH are approximately 9.2% and 4.7% on (001) and (111) surface respectively, showing evidently that the density of -COOH groups on (001) surface is surprisingly higher than that of (111) surface. Comprehensive comparison revealed that oxygen-related groups is higher on (001) compared with that of (111) surface. The conversion mechanism was supposed to explain the evolution from hydrogenated to oxygenated functionalizations on diamond with differently oriented crystal facets, and the crystal orientation was the significant factor in controlling the surface reactivity and hence the oxidization process.

ジャーナルDiamond and Related Materials
出版ステータスPublished - 2011 11月

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 化学一般
  • 機械工学
  • 材料化学
  • 電子工学および電気工学


「Higher coverage of carboxylic acid groups on oxidized single crystal diamond (001)」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。