High‐frequency asymptotics in inverse scattering by ellipsoids

Yani Arnaoudov*, George Dassios, Vladimir Simeonov Gueorguiev

*この研究の対応する著者

研究成果: Article査読

7 被引用数 (Scopus)

抄録

A triaxial ellipsoid of unknown position, size and orientation is located somewhere in space. High‐frequency asymptotics for the scattering amplitude and the sojourn time for the travelling of a high‐frequency acoustic plane wave are utilized to determine the position of a supporting plane for the ellipsoid. We describe a method that identifies the coordinates of the centre, the three semiaxes, and the three angles of the ellipsoid from the knowledge of nine sojourn times corresponding to nine directions of excitation. The method is independent of boundary conditions, it is applicable to any restricted non‐zero‐measure angle of observation, and leads to numerics that avoid elliptic integrals. A priori information about the location of the ellipsoid reduces the number of measurements to six, while the corresponding algorithm demands the solution of a linear system and the inversion of a dyadic.

本文言語English
ページ(範囲)1-12
ページ数12
ジャーナルMathematical Methods in the Applied Sciences
16
1
DOI
出版ステータスPublished - 1993
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)
  • 工学(全般)

フィンガープリント

「High‐frequency asymptotics in inverse scattering by ellipsoids」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル