TY - JOUR
T1 - Histological and molecular characterization of the femoral attachment of the human ligamentum capitis femoris
AU - Shinohara, Y.
AU - Kumai, T.
AU - Higashiyama, I.
AU - Hayashi, K.
AU - Matsuda, T.
AU - Tanaka, Y.
AU - Takakura, Y.
PY - 2014/8
Y1 - 2014/8
N2 - The ligamentum capitis femoris (LCF) has increased in clinical significance through the development of hip arthroscopy. The histological pathologies and molecular composition of the femoral attachment of the LCF and the degeneration caused by LCF disruption were investigated in the human hip joint. Twenty-four LCFs were retrieved at surgery for femoral neck fracture (age range: 63-87 years). In the "intact" (i.e., intact throughout its length, n=12) group, the attachment consisted of rich fibrocartilage. Fibrocartilage cells were present in the midsubstance. In contrast, the construction of the attachment in the "disrupted" (i.e., ligament no longer attached to the femoral head, n=12) group had disappeared. The attachment in the disrupted group was not labeled for type II collagen or aggrecan, while that in the intact group was labeled for types I, II and III collagen, chondroitin 4-sulfate, chondroitin 6-sulfate, aggrecan, and versican. The percentage of single-stranded DNA-positive chondrocytes was significantly higher in the disrupted group than in the intact group. We conclude that the femoral attachment of the LCF has a characteristic fibrocartilaginous structure that is likely to adjust to the mechanical load, and suggest that its degeneration is advanced by disruption and should be regarded as a clinical pathology.
AB - The ligamentum capitis femoris (LCF) has increased in clinical significance through the development of hip arthroscopy. The histological pathologies and molecular composition of the femoral attachment of the LCF and the degeneration caused by LCF disruption were investigated in the human hip joint. Twenty-four LCFs were retrieved at surgery for femoral neck fracture (age range: 63-87 years). In the "intact" (i.e., intact throughout its length, n=12) group, the attachment consisted of rich fibrocartilage. Fibrocartilage cells were present in the midsubstance. In contrast, the construction of the attachment in the "disrupted" (i.e., ligament no longer attached to the femoral head, n=12) group had disappeared. The attachment in the disrupted group was not labeled for type II collagen or aggrecan, while that in the intact group was labeled for types I, II and III collagen, chondroitin 4-sulfate, chondroitin 6-sulfate, aggrecan, and versican. The percentage of single-stranded DNA-positive chondrocytes was significantly higher in the disrupted group than in the intact group. We conclude that the femoral attachment of the LCF has a characteristic fibrocartilaginous structure that is likely to adjust to the mechanical load, and suggest that its degeneration is advanced by disruption and should be regarded as a clinical pathology.
KW - Enthesis
KW - Ligament rupture
KW - Stability
KW - Stress deprivation
UR - http://www.scopus.com/inward/record.url?scp=84904445253&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84904445253&partnerID=8YFLogxK
U2 - 10.1111/sms.12155
DO - 10.1111/sms.12155
M3 - Article
C2 - 24355023
AN - SCOPUS:84904445253
SN - 0905-7188
VL - 24
SP - e245-e253
JO - Scandinavian Journal of Medicine and Science in Sports
JF - Scandinavian Journal of Medicine and Science in Sports
IS - 4
ER -