History-based throughput prediction with Hidden Markov Model in mobile networks

Bo Wei, Kenji Kanai, Jiro Katto

研究成果: Conference contribution

10 被引用数 (Scopus)

抄録

Throughput prediction contributes a lot to adaptive bitrate control, adjusting the quality of video streaming accordingly to offer smooth media transmission and save energy at the same time. To solve the problem of throughput prediction for real time communication, this paper puts forward a new history-based throughput prediction method applying Hidden Markov Model in mobile networks. The main purpose of this method is to predict future throughput for real time communication in mobile network. Our novel approach utilizes Hidden Markov Model (HMM) with Gaussian Mixture Model (GMM) to deal with history time series of throughput and judge fluctuation factor with total variance when predicting future throughput. By conducting experiments with the new methodology, we compare the accuracy of the proposed method with three other conventional prediction methods. Results show our proposed method could identify data fluctuation effectively and predict future 100s throughput with high accuracy in various situations.

本文言語English
ホスト出版物のタイトル2016 IEEE International Conference on Multimedia and Expo Workshop, ICMEW 2016
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781509015528
DOI
出版ステータスPublished - 2016 9月 22
イベント2016 IEEE International Conference on Multimedia and Expo Workshop, ICMEW 2016 - Seattle, United States
継続期間: 2016 7月 112016 7月 15

出版物シリーズ

名前2016 IEEE International Conference on Multimedia and Expo Workshop, ICMEW 2016

Other

Other2016 IEEE International Conference on Multimedia and Expo Workshop, ICMEW 2016
国/地域United States
CitySeattle
Period16/7/1116/7/15

ASJC Scopus subject areas

  • 信号処理
  • メディア記述
  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「History-based throughput prediction with Hidden Markov Model in mobile networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル