Hollow-fiber blood-dialysis membranes: Superoxide generation, permeation, and dismutation measured by chemiluminescence

Ken Ichiro Yamamoto, Kazuyoshi Kobayashi, Kosuke Endo, Takehiro Miyasaka, Seiichi Mochizuki, Fukashi Kohori, Kiyotaka Sakai*

*この研究の対応する著者

研究成果: Article査読

15 被引用数 (Scopus)

抄録

The interaction of blood with a material surface results in activation of the body's humoral immune system and the generation of reactive oxygen species (ROS). It has recently become clear that ROS are central to the pathology of many diseases. In this study, we evaluated the superoxide generation, permeation, and dismutation in hollow-fiber dialysis membranes by using 2-methyl-6-p-methoxyphenylethynyl-imidazopyrazinone (MPEC) as a superoxide-reactive chemiluminescence producer and an optical fiber probe to detect the resulting chemiluminescence in the hollow fiber lumen. We measured the superoxide generated when bovine blood leukocytes were brought into contact with dialysis membranes. Superoxide permeation was determined by measuring MPEC chemiluminescence in the hollow fiber lumen using an optical fiber probe. Additionally, superoxide dismutation was evaluated by examining the difference in superoxide permeability for membranes with and without vitamin E coating. Superoxide generation varies for different membrane materials, depending on the membrane's biocompatibility. Superoxide permeability depends on the diffusive permeability of membranes. No marked decrease in superoxide permeability was observed among membrane materials. The superoxide permeability of vitamin E-coated membrane was smaller than that of uncoated membrane. The antioxidant property of vitamin E-coated membranes is hence effective in causing superoxide dismutation.

本文言語English
ページ(範囲)257-262
ページ数6
ジャーナルJournal of Artificial Organs
8
4
DOI
出版ステータスPublished - 2005 12月

ASJC Scopus subject areas

  • 医学(その他)
  • 生体材料
  • 生体医工学
  • 循環器および心血管医学

フィンガープリント

「Hollow-fiber blood-dialysis membranes: Superoxide generation, permeation, and dismutation measured by chemiluminescence」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル