抄録
We study the convergence of solutions of Hamilton-Jacobi equations on domains with small scale periodic structure as the frequency of periodicity tends to infinity. We treat both the Neumann-type and the Dirichlet boundary value problems. The limit functions are characterized as unique solutions of Hamilton-Jacobi equations with the Hamiltonians determined by the corresponding cell problems.
本文言語 | English |
---|---|
ページ(範囲) | 1011-1058 |
ページ数 | 48 |
ジャーナル | Indiana University Mathematics Journal |
巻 | 47 |
号 | 3 |
出版ステータス | Published - 1998 9月 |
外部発表 | はい |
ASJC Scopus subject areas
- 数学 (全般)