Hybridization of deoxyribonucleic acid and immobilization of green fluorescent protein on nanostructured organosilane templates

Takashi Tanii*, Takumi Hosaka, Takeo Miyake, Yuzo Kanari, Guo Jun Zhang, Takashi Funatsu, Iwao Ohdomari

*この研究の対応する著者

研究成果: Article査読

13 被引用数 (Scopus)

抄録

We propose a novel process for preferential immobilization of deoxyribonucleic acid (DNA) and green fluorescent protein (GFP) onto organosilane self-assembled monolayer (SAM) templates. One of the advantages of using the organosilane SAM as the template is that it is electron-beam sensitive and, by utilizing the SAM as an alternative resist film, we can make nanopatterns on a molecular scale because the proximity effect is negligible owing to the film's thinness. An other advantage is that the organosilane SAM is repellent to both DNA and GFP. Thus, the patterned SAM can be utilized as the passivation film covering the outside of the pattern while DNA and GFP are immobilized within the pattern. We investigate two kinds of organosilane SAMs for the template. One is n-octadecyltrimethoxysilane (ODS) SAM, and the other is 1H,1H,2H,2H-perfluorodecyltriethoxysilane (FDS) SAM. Our results indicate that the ODS SAM is more repellent to DNA than the FDS SAM and is suitable for DNA immobilization, while the FDS SAM template is suitable for GFP immobilization via biotinavidin coupling because the FDS SAM surface prevents the nonspecific adsorption of streptavidin. Although the nonspecific adsorption of DNA and GFP on a SAM is also recognized, by controlling both the concentration and the incubation time, we can immobilize DNA and GFP preferentially onto nanopatterns of 100 nm diameter.

本文言語English
ページ(範囲)5851-5855
ページ数5
ジャーナルJapanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers
44
7 B
DOI
出版ステータスPublished - 2005 7月 26

ASJC Scopus subject areas

  • 工学(全般)
  • 物理学および天文学(全般)

フィンガープリント

「Hybridization of deoxyribonucleic acid and immobilization of green fluorescent protein on nanostructured organosilane templates」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル