Hybridized discontinuous Galerkin method for convection-diffusion problems

Issei Oikawa*

*この研究の対応する著者

研究成果: Article査読

13 被引用数 (Scopus)

抄録

In this paper, we propose a new hybridized discontinuous Galerkin (DG) method for the convection-diffusion problems with mixed boundary conditions. A feature of the proposed method, is that it can greatly reduce the number of globally-coupled degrees of freedom, compared with the classical DG methods. The coercivity of a convective part is achieved by adding an upwinding term. We give error estimates of optimal order in the piecewise H 1-norm for general convection-diffusion problems. Furthermore, we prove that the approximate solution given by our scheme is close to the solution of the purely convective problem when the viscosity coefficient is small. Several numerical results are presented to verify the validity of our method.

本文言語English
ページ(範囲)335-354
ページ数20
ジャーナルJapan Journal of Industrial and Applied Mathematics
31
2
DOI
出版ステータスPublished - 2014

ASJC Scopus subject areas

  • 応用数学
  • 工学一般

フィンガープリント

「Hybridized discontinuous Galerkin method for convection-diffusion problems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル