Hydrogen absorption and thermal desorption behavior of Ni-Ti superelastic alloy immersed in neutral NaCl and NaF solutions under applied potentia

Asahi Ota, Yushin Yazaki, Ken'ichi Yokoyama*, Jun'ichi Sakai

*この研究の対応する著者

    研究成果: Article査読

    11 被引用数 (Scopus)

    抄録

    The hydrogen absorption and thermal desorption behavior of Ni-Ti superelastic alloy immersed in neutral NaCl and NaF aqueous solutions at 25°C under an applied cathodic potential for 2 h have been systematically investigated by hydrogen thermal desorption analysis. The critical potential for hydrogen absorption is independent of the type and concentration of solution. The amount of absorbed hydrogen increases with decreasing applied potential, although it is only slightly changed by the type of solution. The amount of hydrogen desorbed at low temperatures, for the alloy immersed in NaF solutions, is larger than those in NaCl solutions, suggesting that the type of solution affects the hydrogen states in the alloy. The present results indicate that for Ni-Ti superelastic alloy, compared with titanium and its alloys, the critical potential for hydrogen absorption is located in a more noble direction, and the amount of absorbed hydrogen is large in NaCl and NaF solutions. Thus, the hydrogen embrittlement of Ni-Ti superelastic alloy probably occurs more readily than those of titanium and its alloys in NaCl and NaF solutions.

    本文言語English
    ページ(範囲)1843-1849
    ページ数7
    ジャーナルMaterials Transactions
    50
    7
    DOI
    出版ステータスPublished - 2009 7月

    ASJC Scopus subject areas

    • 材料科学(全般)
    • 凝縮系物理学
    • 機械工学
    • 材料力学

    フィンガープリント

    「Hydrogen absorption and thermal desorption behavior of Ni-Ti superelastic alloy immersed in neutral NaCl and NaF solutions under applied potentia」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル