抄録
We study the existence of unbounded solutions of singular Hamiltonian systems: q̈ + ∇V(q)=0, (*) where V(q) ∼ -1/|q|α is a potential with a singularity. For a class of singular potentials with a strong force α > 2, we show the existence of at least one hyperbolic-like solutions. More precisely, for given H > 0 and θ+, θ- ε SN-1, we find a solution q(t) of (*) satisfying 1/2 |q̇|2 + V(q) = H, |q(t) |→ as t → ±∞ limt→±∞ q(t)/|q(t)|=θ±.
本文言語 | English |
---|---|
ページ(範囲) | 43-65 |
ページ数 | 23 |
ジャーナル | Nonlinear Differential Equations and Applications |
巻 | 7 |
号 | 1 |
DOI | |
出版ステータス | Published - 2000 1月 1 |
ASJC Scopus subject areas
- 分析
- 応用数学