Hyperparameter Learning of Stochastic Image Generative Models with Bayesian Hierarchical Modeling and Its Effect on Lossless Image Coding

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

Explicit assumption of stochastic data generative models is a remarkable feature of lossless compression of general data in information theory. However, current lossless image coding mostly focus on coding procedures without explicit assumption of the stochastic generative model. Therefore, we have difficulty discussing the theoretical optimality of the coding procedure to the stochastic generative model. In this paper, we solve this difficulty by constructing a stochastic generative model by interpreting the previous coding procedure from another perspective. An important problem of our approach is how to learn the hyperparameters of the stochastic generative model because the optimality of our coding algorithm is guaranteed only asymptotically and the hyperparameter setting still affects the expected code length for finite length data. For this problem, we use Bayesian hierarchical modeling and confirm its effect by numerical experiments. In lossless image coding, this is the first study assuming such an explicit stochastic generative model and learning its hyperparameters, to the best of our knowledge.

本文言語English
ホスト出版物のタイトル2021 IEEE Information Theory Workshop, ITW 2021 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781665403122
DOI
出版ステータスPublished - 2021
イベント2021 IEEE Information Theory Workshop, ITW 2021 - Virtual, Online, Japan
継続期間: 2021 10月 172021 10月 21

出版物シリーズ

名前2021 IEEE Information Theory Workshop, ITW 2021 - Proceedings

Conference

Conference2021 IEEE Information Theory Workshop, ITW 2021
国/地域Japan
CityVirtual, Online
Period21/10/1721/10/21

ASJC Scopus subject areas

  • 計算理論と計算数学
  • コンピュータ ネットワークおよび通信
  • 情報システム
  • ソフトウェア

フィンガープリント

「Hyperparameter Learning of Stochastic Image Generative Models with Bayesian Hierarchical Modeling and Its Effect on Lossless Image Coding」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル