Identiflability of subspaces and homomorphic images of zero-reversible languages

Satoshi Kobayashi, Takashi Yokomori

研究成果: Conference contribution

抄録

In this paper, we study two operations of taking subspaces and homomorphic images of identifiable concept classes from positive data. We give sufficient conditions for the identifiable classes to be identifiable from positive data after the applications of those two operations. As one of the examples to show the effectiveness of the obtained theorems, we will apply them to the class of zero-reversible languages, and obtain some interesting identifiable language classes related to reversible languages. Further, we will show a connection of those theories to the theory of approximate identification in the limit from positive data([Kob96]). Another important contribution of this paper is am algebraic extension of Angluin's theorem in [Ang80] based on am algebraic characterization of zero-reversible languages given by [Pin87]. This generalized theorem tells us the importaace of Pin's chazacterization of zero-reversible languages using finitely generated groups in the context of identification in the limit from positive data.

本文言語English
ホスト出版物のタイトルLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
出版社Springer Verlag
ページ48-61
ページ数14
1316
ISBN(印刷版)3540635777, 9783540635772
DOI
出版ステータスPublished - 1997
外部発表はい
イベント8th International Workshop on Algorithmic Learning Theory, ALT 1997 - Sendai, Japan
継続期間: 1997 10月 61997 10月 8

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
1316
ISSN(印刷版)03029743
ISSN(電子版)16113349

Other

Other8th International Workshop on Algorithmic Learning Theory, ALT 1997
国/地域Japan
CitySendai
Period97/10/697/10/8

ASJC Scopus subject areas

  • コンピュータ サイエンス(全般)
  • 理論的コンピュータサイエンス

フィンガープリント

「Identiflability of subspaces and homomorphic images of zero-reversible languages」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル