Identifying the Optimal Induction Motor Design for Increased Power Density in Commuter Railway Use through Loss Analysis

Yusya Sadali, Keiichiro Kondo, Kohei Aiso, Kazuki Fujimoto, Shingo Makishima, Yuuki Nakashima, Toshihiro Yamaguchi

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

Commuter railway vehicles undergo repeated stop-and-go running patterns between short distances. The traction components are specifically designed in such to provide high power density for continual acceleration and deceleration for the operating speed range. Reducing the number of motor stator winding turns is a method to maximize power density through integrated design, of the motor-inverter traction system. This paper aims to evaluate design changes for maximize power density through loss analysis of the traction components. Analysis is done through 2D FEM simulation on the motor and digital simulation on the inverter for each design change. A loss model is created to support the loss analysis simulation. The optimal design for this application is determined by evaluating the losses and mapping the efficiencies in terms of the overall traction system.

本文言語English
ホスト出版物のタイトルProceedings of the Energy Conversion Congress and Exposition - Asia, ECCE Asia 2021
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1187-1192
ページ数6
ISBN(電子版)9781728163444
DOI
出版ステータスPublished - 2021 5月 24
イベント12th IEEE Energy Conversion Congress and Exposition - Asia, ECCE Asia 2021 - Virtual, Singapore, Singapore
継続期間: 2021 5月 242021 5月 27

出版物シリーズ

名前Proceedings of the Energy Conversion Congress and Exposition - Asia, ECCE Asia 2021

Conference

Conference12th IEEE Energy Conversion Congress and Exposition - Asia, ECCE Asia 2021
国/地域Singapore
CityVirtual, Singapore
Period21/5/2421/5/27

ASJC Scopus subject areas

  • 制御と最適化
  • エネルギー工学および電力技術
  • 電子工学および電気工学
  • 機械工学

フィンガープリント

「Identifying the Optimal Induction Motor Design for Increased Power Density in Commuter Railway Use through Loss Analysis」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル