Image Quality Enhancement with Machine Learning Based Multi-Step Super-Resolution

Niai Yano, Hiroshi Watanabe

研究成果: Conference contribution

抄録

Machine Learning based Super-Resolution techniques have recently been able to achieve good qualitative results. Convolutional Neural Networks have thus become the basis for recent studies on SR techniques. In this paper, we propose a novel Multi-Step Super-Resolution technique that applies previous methods that achieve good results. We also demonstrate that this proposed method achieves a significant improvement in both subjective visual quality and in reconstruction accuracy, relative to conventional methods.

本文言語English
ホスト出版物のタイトル2020 International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2020
出版社Institute of Electrical and Electronics Engineers Inc.
ページ141-145
ページ数5
ISBN(電子版)9781728149851
DOI
出版ステータスPublished - 2020 2月
イベント2nd International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2020 - Fukuoka, Japan
継続期間: 2020 2月 192020 2月 21

出版物シリーズ

名前2020 International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2020

Conference

Conference2nd International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2020
国/地域Japan
CityFukuoka
Period20/2/1920/2/21

ASJC Scopus subject areas

  • 情報システムおよび情報管理
  • 人工知能
  • コンピュータ ネットワークおよび通信
  • コンピュータ ビジョンおよびパターン認識
  • 情報システム
  • 信号処理

フィンガープリント

「Image Quality Enhancement with Machine Learning Based Multi-Step Super-Resolution」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル