Improved gene transfer efficiency of a DNA-lipid-apatite composite layer by controlling the layer molecular composition

Yushin Yazaki, Ayako Oyane*, Hideo Tsurushima, Hiroko Araki, Yu Sogo, Atsuo Ito, Atsushi Yamazaki

*この研究の対応する著者

研究成果: Article査読

5 被引用数 (Scopus)

抄録

Surface-mediated nonviral gene transfer systems using biocompatible apatite-based composite layers have potential use in tissue engineering applications. Herein, we investigated a relatively efficient system based on a DNA-lipid-apatite composite layer (DLp-Ap layer): an apatite (Ap) layer with immobilized DNA and lipid (Lp) complexes (DLp complexes). DLp-Ap layers were fabricated on substrates using supersaturated calcium phosphate coprecipitation solutions supplemented with DLp complexes, and the molecular compositions of the DLp-Ap layers were controlled by varying the net DNA concentrations and Lp/DNA ratios in the coprecipitation solutions. Increases in both the DNA concentration and Lp/DNA ratio in the coprecipitation solution increased the DLp complex content of the resulting DLp-Ap layer. However, a higher DLp complex content did not always provide increased gene transfer efficiency to the CHO-K1 cells, because there was a threshold content of approximately 10μg/cm2. In addition, DLp-Ap layers with similar DLp complex contents exhibited different gene transfer efficiencies, most likely due to the different Lp/DNA ratios in the layers. Notably, the optimized Lp/DNA ratios in the coprecipitation solutions for maximizing the gene transfer efficiency were lower than those of the conventional particle-mediated lipofection systems. These findings will serve as a useful design guide for the preparation of DLp-Ap layers with high gene transfer efficiency.

本文言語English
ページ(範囲)465-471
ページ数7
ジャーナルColloids and Surfaces B: Biointerfaces
122
DOI
出版ステータスPublished - 2014 10月 1

ASJC Scopus subject areas

  • バイオテクノロジー
  • 表面および界面
  • 物理化学および理論化学
  • コロイド化学および表面化学

フィンガープリント

「Improved gene transfer efficiency of a DNA-lipid-apatite composite layer by controlling the layer molecular composition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル