Improvement in long-term stability of field effect transistor biosensor in aqueous environments using a combination of silane and reduced graphene oxide coating

Sho Hideshima*, Hiroki Hayashi, Ryo Takeuchi, Shofarul Wustoni, Shigeki Kuroiwa, Takuya Nakanishi, Toshiyuki Momma, Tetsuya Osaka

*この研究の対応する著者

研究成果: Article査読

7 被引用数 (Scopus)

抄録

A field-effect transistor (FET) biosensor that can directly detect target molecules is a promising diagnostic tool for healthcare and medical applications. However, the immersion of FET sensors in aqueous physiological environments for the long-term stability might damage the insulating layer of silicon dioxide, resulting in the degradation of the sensor response reproducibility. In this study, to improve the durability of the sensor response for long-term immersion in aqueous solution, we examined the effectiveness of reduced graphene oxide (rGO) coating on the gate insulator of FET sensors. The rGO coating was applied to the gate surface of the FET biosensor modified with an amino-terminated self-assembled monolayer by two steps: deposition of graphene oxide (GO) dispersion onto the monolayer-modified surface and subsequent thermal reduction of GO. The transconductance of both GO-coated and rGO-coated FETs remained unchanged after incubation under physiological conditions, suggesting that graphene prevents cations in the electrolytes from invading the gate insulator of the FET. Furthermore, functionalizing the rGO-coated FET surface enabled specific detection of target molecule.

本文言語English
論文番号111859
ジャーナルMicroelectronic Engineering
264
DOI
出版ステータスPublished - 2022 8月 15

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 原子分子物理学および光学
  • 凝縮系物理学
  • 表面、皮膜および薄膜
  • 電子工学および電気工学

フィンガープリント

「Improvement in long-term stability of field effect transistor biosensor in aqueous environments using a combination of silane and reduced graphene oxide coating」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル