TY - JOUR
T1 - Improvement of combustion and exhaust gas emissions in a passenger car diesel engine by modification of combustion chamber design
AU - Kaminaga, Takashi
AU - Kusaka, Jin
PY - 2006
Y1 - 2006
N2 - Three types of combustion chamber configurations (Types A, B, and C) with compression ratio lower than that of the baseline were tested for improved performance and exhaust gas emissions from an inline-four-cylinder 1.7-liter common-rail diesel engine manufactured for use with passenger cars. First, three combustion chambers were examined numerically using CFD code. Second, engine tests were conducted by using Type B combustion chamber, which is expected to have the best performance and exhaust gas emissions of all. As a result, 80% of NOx emissions at both low and medium loads at 1500 rpm, the engine speed used frequently in the actual city driving, improved with nearly no degradation in smoke emissions and brake thermal efficiency. It was shown that a large amount of cooled EGR enables NOx-free combustion with long ignition delay. In addition, the low compression ratio piston led to 22% improvement on maximum torque at the same engine speed without increasing maximum cylinder pressure.
AB - Three types of combustion chamber configurations (Types A, B, and C) with compression ratio lower than that of the baseline were tested for improved performance and exhaust gas emissions from an inline-four-cylinder 1.7-liter common-rail diesel engine manufactured for use with passenger cars. First, three combustion chambers were examined numerically using CFD code. Second, engine tests were conducted by using Type B combustion chamber, which is expected to have the best performance and exhaust gas emissions of all. As a result, 80% of NOx emissions at both low and medium loads at 1500 rpm, the engine speed used frequently in the actual city driving, improved with nearly no degradation in smoke emissions and brake thermal efficiency. It was shown that a large amount of cooled EGR enables NOx-free combustion with long ignition delay. In addition, the low compression ratio piston led to 22% improvement on maximum torque at the same engine speed without increasing maximum cylinder pressure.
UR - http://www.scopus.com/inward/record.url?scp=85072428748&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85072428748&partnerID=8YFLogxK
U2 - 10.4271/2006-01-3435
DO - 10.4271/2006-01-3435
M3 - Conference article
AN - SCOPUS:85072428748
SN - 0148-7191
JO - SAE Technical Papers
JF - SAE Technical Papers
T2 - Powertrain and Fluid Systems Conference and Exhibition
Y2 - 16 October 2006 through 19 October 2006
ER -