Improving classification accuracy of image categories using local descriptors with supplemental information

Kazuya Ueki, Youhei Shiraishi, Naohiro Tawara, Tetsunori Kobayashi

研究成果: Article査読

抄録

In this paper we address the problem of image classification by embedding the spatial information into the local descriptor. In our method, we directly concatenate (x,y) coordinates of an image into the original feature vector. This simple idea can perform well in the object category classification even though the feature vector size is almost the same as the conventional approach. Results are reported for classification of the Caltech-101 dataset and our methods are found to produce consistently better results compared with traditional Bag-of-Features approaches in all experiments.

本文言語English
ページ(範囲)1144-1149
ページ数6
ジャーナルSeimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering
80
12
DOI
出版ステータスPublished - 2014 12月 1
外部発表はい

ASJC Scopus subject areas

  • 機械工学

フィンガープリント

「Improving classification accuracy of image categories using local descriptors with supplemental information」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル