Improving principal component analysis based phase extraction method for phase-shifting interferometry by integrating spatial information

Kohei Yatabe, Kenji Ishikawa, Yasuhiro Oikawa

研究成果: Article査読

36 被引用数 (Scopus)

抄録

Phase extraction methods based on the principal component analysis (PCA) can extract objective phase from phase-shifted fringes without any prior knowledge about their shift steps. Although it is fast and easy to implement, many fringe images are needed for extracting the phase accurately from noisy fringes. In this paper, a simple extension of the PCA method for reducing extraction error is proposed. It can effectively reduce influence from random noise, while most of the advantages of the PCA method is inherited because it only modifies the construction process of the data matrix from fringes. Although it takes more time because size of the data matrix to be decomposed is larger, computational time of the proposed method is shown to be reasonably fast by using the iterative singular value decomposition algorithm. Numerical experiments confirmed that the proposed method can reduce extraction error even when the number of interferograms is small.

本文言語English
ページ(範囲)22881-22891
ページ数11
ジャーナルOptics Express
24
20
DOI
出版ステータスPublished - 2016 10月 3

ASJC Scopus subject areas

  • 原子分子物理学および光学

フィンガープリント

「Improving principal component analysis based phase extraction method for phase-shifting interferometry by integrating spatial information」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル