TY - JOUR
T1 - Increased stability of the higher order structure of chicken erythrocyte chromatin
T2 - Nanosecond anisotropy studies of intercalated ethidium
AU - Ashikawa, Ikuo
AU - Kinosita, Kazuhiko
AU - Ikegami, Akira
AU - Nishimura, Yoshifumi
AU - Tsuboi, Masamichi
PY - 1985
Y1 - 1985
N2 - Internal motion of the DNA in chicken erythrocyte chromatin fibers was studied by measurement of the fluorescence anisotropy decay of ethidium intercalated in the linker region. A comparison of the decay curves of the dye in chicken erythrocyte chromatin with those of calf thymus chromatin [Ashikawa, I., Kinosita, K., Jr., Ikegami, A., Nishimura, Y., Tsuboi, M., Watanabe, K., Iso, K., & Nakano, T. (1983) Biochemistry 22, 6018-6026] revealed greater suppression of nucleosome movement in chicken erythrocyte chromatin. Furthermore, the transition of this chromatin to the compact (solenoidal) structure occurred at lower solvent concentrations of Na+ or Mg2+ than those for calf thymus chromatin. These results demonstrated increased stability of the higher order structure (the solenoid) of chicken erythrocyte chromatin, which may be related to the reduction of nuclear activity in the chicken erythrocyte cell. In addition to intact chicken erythrocyte chromatin, we studied the structural transitions of H1-depleted and H1,H5-depleted chromatins. The result indicated that histone H5 of this chromatin stabilizes the higher order structure in the presence of magnesium (or divalent) cation and did not induce the transition in the solution containing only sodium cation.
AB - Internal motion of the DNA in chicken erythrocyte chromatin fibers was studied by measurement of the fluorescence anisotropy decay of ethidium intercalated in the linker region. A comparison of the decay curves of the dye in chicken erythrocyte chromatin with those of calf thymus chromatin [Ashikawa, I., Kinosita, K., Jr., Ikegami, A., Nishimura, Y., Tsuboi, M., Watanabe, K., Iso, K., & Nakano, T. (1983) Biochemistry 22, 6018-6026] revealed greater suppression of nucleosome movement in chicken erythrocyte chromatin. Furthermore, the transition of this chromatin to the compact (solenoidal) structure occurred at lower solvent concentrations of Na+ or Mg2+ than those for calf thymus chromatin. These results demonstrated increased stability of the higher order structure (the solenoid) of chicken erythrocyte chromatin, which may be related to the reduction of nuclear activity in the chicken erythrocyte cell. In addition to intact chicken erythrocyte chromatin, we studied the structural transitions of H1-depleted and H1,H5-depleted chromatins. The result indicated that histone H5 of this chromatin stabilizes the higher order structure in the presence of magnesium (or divalent) cation and did not induce the transition in the solution containing only sodium cation.
UR - http://www.scopus.com/inward/record.url?scp=0021978987&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0021978987&partnerID=8YFLogxK
M3 - Article
C2 - 3986177
AN - SCOPUS:0021978987
SN - 0006-2960
VL - 24
SP - 1291
EP - 1297
JO - Biochemistry
JF - Biochemistry
IS - 6
ER -