Inferring user interests from relevance feedback with high similarity sequence data-driven clustering

Roman Y. Shtykh, Qun Jin

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

Relevance feedback is an important source of information about a user and often used for usage and user modeling for further personalization of usersystem interactions. In this paper we present a method to infer the user's interests from his/her relevance feedback using an online incremental clustering method. For inference of a new interest (concept) and concept update the method uses the similarity characteristics of uniform user relevance feedback. It is fast, easy to implement and gives reasonable clustering results. We evaluate the method against two different data sets, demonstrate and discuss the outcomes.

本文言語English
ホスト出版物のタイトルProceedings of the 2nd International Symposium on Universal Communication, ISUC 2008
ページ390-396
ページ数7
DOI
出版ステータスPublished - 2008 12月 1
イベント2nd International Symposium on Universal Communication, ISUC 2008 - Osaka, Japan
継続期間: 2008 12月 152008 12月 16

出版物シリーズ

名前Proceedings of the 2nd International Symposium on Universal Communication, ISUC 2008

Conference

Conference2nd International Symposium on Universal Communication, ISUC 2008
国/地域Japan
CityOsaka
Period08/12/1508/12/16

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ サイエンスの応用
  • 情報システム
  • ソフトウェア

フィンガープリント

「Inferring user interests from relevance feedback with high similarity sequence data-driven clustering」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル