Integration of behaviors and languages with a hierarchal structure self-organized in a neuro-dynamical model

Tetsuya Ogata, Hiroshi G. Okuno

研究成果: Conference contribution

12 被引用数 (Scopus)

抄録

This paper proposes an approach for robots to ac-quire language grounding in their robot's sensory-motor flow using neuro-dynamical models. We trained our neuro-dynamical model over a set of sentences represented as sequences of characters. For the integrated recognition, we introduced a cognitive hypothesis for integrated recognition where a human's brain separately processed the 'structure' and 'contents' of a sentence. Our model was trained with the spelling of words and their semantic role emerged in the first model. As a result of binding the model with sensory-motion patterns, we confirmed that it could associate proper word spellings with a sensory-motor flows and a semantic roles, even if an observed flow had not been learned.

本文言語English
ホスト出版物のタイトルProceedings of the 2013 IEEE Workshop on Robotic Intelligence in Informationally Structured Space, RiiSS 2013 - 2013 IEEE Symposium Series on Computational Intelligence, SSCI 2013
ページ89-95
ページ数7
DOI
出版ステータスPublished - 2013
イベント2013 IEEE Workshop on Robotic Intelligence in Informationally Structured Space, RiiSS 2013 - 2013 IEEE Symposium Series on Computational Intelligence, SSCI 2013 - Singapore, Singapore
継続期間: 2013 4月 162013 4月 19

出版物シリーズ

名前Proceedings of the 2013 IEEE Workshop on Robotic Intelligence in Informationally Structured Space, RiiSS 2013 - 2013 IEEE Symposium Series on Computational Intelligence, SSCI 2013

Conference

Conference2013 IEEE Workshop on Robotic Intelligence in Informationally Structured Space, RiiSS 2013 - 2013 IEEE Symposium Series on Computational Intelligence, SSCI 2013
国/地域Singapore
CitySingapore
Period13/4/1613/4/19

ASJC Scopus subject areas

  • 人工知能
  • 人間とコンピュータの相互作用

フィンガープリント

「Integration of behaviors and languages with a hierarchal structure self-organized in a neuro-dynamical model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル