抄録
Molecular computer simulation has been performed on liquid methanol confined into silica cylindrical pores with diameter D = 24 Å. It has been motivated by recent conclusions obtained from neutron scattering experiments in similar conditions of confinement. A central issue is the influence of H-bond interactions within the fluid and between the fluid and the pore surface on the local structure of the liquid. It relies on the use of a realistic atomic description of the porous silicate and the chemical nature of the surface. A description of the interfacial interactions and the spatial correlations has been achieved in terms of energy distribution functions and density radial distribution functions. It shows that surface silanols significantly affect the spatial arrangement of the interfacial methanol molecules, which occupy half the pore volume. In addition, the effects of the surface boundary conditions propagate into the entire volume through layering and orientation order.
本文言語 | English |
---|---|
ページ(範囲) | 236-244 |
ページ数 | 9 |
ジャーナル | Chemical Physics |
巻 | 317 |
号 | 2-3 |
DOI | |
出版ステータス | Published - 2005 10月 31 |
外部発表 | はい |
ASJC Scopus subject areas
- 物理学および天文学(全般)
- 物理化学および理論化学