Invariant manifolds and Lagrangian coherent structures in the planar circular restricted three-body problem

Kaori Onozaki, Hiroaki Yoshimura

研究成果: Article査読

3 被引用数 (Scopus)

抄録

For the sake of spacecraft mission design, it is indispensable to develop a low energy transfer of spacecrafts using very little fuel for interplanetary transport network. The Planar Circular Restricted Three-Body Problem (PCR3BP) has been a fundamental tool for the analysis of such a space mission design. In this paper, we explore stable and unstable invariant manifolds associated with the collinear Lagrange points L1, L2 of the PCR3BP, in which geometrical structures of the invariant manifolds are clarified on a Poincaré section. Further, we compute the Finite Time Lyapunov Exponent fields (FTLE fields) to obtain Lagrangian Coherent Structures (LCS) as the ridges of the FTLE fields. In particular, we compare the LCS with the invariant manifolds on the Poincare section from the viewpoint of the numerical integration times.

本文言語English
ページ(範囲)119-128
ページ数10
ジャーナルTheoretical and Applied Mechanics Japan
62
DOI
出版ステータスPublished - 2014

ASJC Scopus subject areas

  • 数学 (全般)
  • 凝縮系物理学
  • 材料力学

フィンガープリント

「Invariant manifolds and Lagrangian coherent structures in the planar circular restricted three-body problem」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル