Invariant Measures in Coupled KPZ Equations

Tadahisa Funaki*

*この研究の対応する著者

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

We discuss coupled KPZ (Kardar-Parisi-Zhang) equations. The motivation comes from the study of nonlinear fluctuating hydrodynamics, cf. [11, 12]. We first give a quick overview of results of Funaki and Hoshino [6], in particular, two approximating equations, trilinear condition (T) for coupling constants Γ, invariant measures and global-in-time existence of solutions. Then, we study at heuristic level the role of the trilinear condition (T) in view of invariant measures and renormalizations for 4th order terms. Ertaş and Kardar [2] gave an example which does not satisfy (T) but has an invariant measure. We finally discuss the cross-diffusion case.

本文言語English
ホスト出版物のタイトルStochastic Dynamics Out of Equilibrium - Institut Henri Poincaré, 2017
編集者Giambattista Giacomin, Stefano Olla, Ellen Saada, Herbert Spohn, Gabriel Stoltz, Gabriel Stoltz
出版社Springer New York LLC
ページ560-568
ページ数9
ISBN(印刷版)9783030150952
DOI
出版ステータスPublished - 2019
イベントInternational workshop on Stochastic Dynamics out of Equilibrium, IHPStochDyn 2017 - Paris, France
継続期間: 2017 6月 122017 6月 16

出版物シリーズ

名前Springer Proceedings in Mathematics and Statistics
282
ISSN(印刷版)2194-1009
ISSN(電子版)2194-1017

Conference

ConferenceInternational workshop on Stochastic Dynamics out of Equilibrium, IHPStochDyn 2017
国/地域France
CityParis
Period17/6/1217/6/16

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Invariant Measures in Coupled KPZ Equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル