Investigation of features for prediction modeling of nanoscale conduction with time-dependent calculation of electron wave packet

Masakazu Muraguchi*, Ryuho Nakaya, Souma Kawahara, Yoshitaka Itoh, Tota Suko

*この研究の対応する著者

研究成果: Article査読

抄録

A model to predict the electron transmission probability from the random impurity distribution in a two-dimensional nanowire system by combining the time evolution of the electron wave function and machine learning is proposed. We have shown that the intermediate state of the time evolution calculation is advantageous for efficient modeling by machine learning. The features for machine learning are extracted by analyzing the time variation of the electron density distribution using time evolution calculations. Consequently, the prediction error of the model is improved by performing machine learning based on the features. The proposed method provides a useful perspective for analyzing the motion of electrons in nanoscale semiconductors.

本文言語English
論文番号044001
ジャーナルJapanese journal of applied physics
61
4
DOI
出版ステータスPublished - 2022 4月

ASJC Scopus subject areas

  • 工学(全般)
  • 物理学および天文学(全般)

フィンガープリント

「Investigation of features for prediction modeling of nanoscale conduction with time-dependent calculation of electron wave packet」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル