Involutive modular transformations on the Siegel upper half plane and an application to representations of quadratic forms

Ki ichiro Hashimoto*, Robert J. Sibner

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We establish a one-to-one correspondence between the set of conjugacy classes of elliptic transformations in Sp(n, Z) which satisfy X2 + I = 0 (resp. X2 + X + I = 0) and the set of hermitian forms of rank n over Z[√-1] (resp. Z[(-1 + √-3)/2]) of determinant ±1. As an application, we generalize, to positive symmetric integral matrices S of rank n, the classical fact that any divisor of m2 + 1 (resp. m + m + 1) can be represented by the quadratic form F(X, Y) = X2 + Y2 (resp. X2 + XY + Y2) with relatively prime integers X, Y: Suppose n ≤ 3 (resp. n ≤ 5). Then S can be represented over Z by F⊗n (n copies of F) if det S is represented by F as above. The proof is based on Siegel-Braun's Mass formula for hermitian forms.

本文言語English
ページ(範囲)102-110
ページ数9
ジャーナルJournal of Number Theory
23
1
DOI
出版ステータスPublished - 1986 5月
外部発表はい

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「Involutive modular transformations on the Siegel upper half plane and an application to representations of quadratic forms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル