TY - JOUR
T1 - Jacquet-langlands-Shimizu correspondence for theta lifts to GSp(2) and its inner forms I
T2 - An explicit functorial correspondence
AU - Narita, Hiroaki
AU - Schmidt, Ralf
N1 - Funding Information:
This work was partly supported by Grant-in-Aid for Young Scientists (B) 21740025, Japan Society for the Promotion of Science.
Publisher Copyright:
© 2017 The Mathematical Society of Japan.
PY - 2017
Y1 - 2017
N2 - As was first essentially pointed out by Tomoyoshi Ibukiyama, Hecke eigenforms on the indefinite symplectic group GSp(1, 1) or the definite symplectic group GSp∗(2) over ℚ right invariant by a (global) maximal open compact subgroup are conjectured to have the same spinor L-functions as those of paramodular new forms of some specified level on the symplectic group GSp(2) (or GSp(4)). This can be viewed as a generalization of the Jacquet-Langlands-Shimizu correspondence to the case of GSp(2) and its inner forms GSp(1,1) and GSp∗(2). In this paper we provide evidence of the conjecture on this explicit functorial correspondence with theta lifts: a theta lift from GL(2)×B× to GSp(1, 1) or GSp∗(2) and a theta lift from GL(2) × GL(2) (or GO(2, 2)) to GSp(2). Here B denotes a definite quaternion algebra over ℚ. Our explicit functorial correspondence given by these theta lifts are proved to be compatible with archimedean and non-archimedean local Jacquet-Langlands correspondences. Regarding the non-archimedean local theory we need some explicit functorial correspondence for spherical representations of the inner form and non-supercuspidal representations of GSp(2), which is studied in the appendix by Ralf Schmidt.
AB - As was first essentially pointed out by Tomoyoshi Ibukiyama, Hecke eigenforms on the indefinite symplectic group GSp(1, 1) or the definite symplectic group GSp∗(2) over ℚ right invariant by a (global) maximal open compact subgroup are conjectured to have the same spinor L-functions as those of paramodular new forms of some specified level on the symplectic group GSp(2) (or GSp(4)). This can be viewed as a generalization of the Jacquet-Langlands-Shimizu correspondence to the case of GSp(2) and its inner forms GSp(1,1) and GSp∗(2). In this paper we provide evidence of the conjecture on this explicit functorial correspondence with theta lifts: a theta lift from GL(2)×B× to GSp(1, 1) or GSp∗(2) and a theta lift from GL(2) × GL(2) (or GO(2, 2)) to GSp(2). Here B denotes a definite quaternion algebra over ℚ. Our explicit functorial correspondence given by these theta lifts are proved to be compatible with archimedean and non-archimedean local Jacquet-Langlands correspondences. Regarding the non-archimedean local theory we need some explicit functorial correspondence for spherical representations of the inner form and non-supercuspidal representations of GSp(2), which is studied in the appendix by Ralf Schmidt.
KW - Jacquet-Langlands correspondence
KW - Spinor L-functions
KW - Theta lifts
UR - http://www.scopus.com/inward/record.url?scp=85032787184&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85032787184&partnerID=8YFLogxK
U2 - 10.2969/jmsj/06941443
DO - 10.2969/jmsj/06941443
M3 - Article
AN - SCOPUS:85032787184
SN - 0025-5645
VL - 69
SP - 1443
EP - 1474
JO - Journal of the Mathematical Society of Japan
JF - Journal of the Mathematical Society of Japan
IS - 4
ER -