JointFusionNet: Parallel Learning Human Structural Local and Global Joint Features for 3D Human Pose Estimation

Zhiwei Yuan, Yaping Yan, Songlin Du*, Takeshi Ikenaga

*この研究の対応する著者

研究成果: Conference contribution

抄録

3D human pose estimation plays important roles in various human-machine interactive applications, but how to efficiently utilize the joint structural global and local features of human pose in deep-learning-based methods has always been a challenge. In this paper, we propose a parallel structural global and local joint features fusion network based on inspiring observation pattern of human pose. To be specific, it is observed that there are common similar global features and local features in human pose cross actions. Therefore, we design global-local capture modules separately to capture features and finally fuse them. The proposed parallel global and local joint features fusion network, entitled JointFusionNet, significantly improve state-of-the-art models on both intra-scenario H36M and cross-scenario 3DPW datasets and lead to appreciable improvements in poses with more similar local features. Notably, it yields an overall improvement of 3.4 mm in MPJPE (relative 6.8 % improvement) over the previous best feature fusion based method [22] on H36M dataset in 3D human pose estimation.

本文言語English
ホスト出版物のタイトルArtificial Neural Networks and Machine Learning - ICANN 2022 - 31st International Conference on Artificial Neural Networks, Proceedings
編集者Elias Pimenidis, Mehmet Aydin, Plamen Angelov, Chrisina Jayne, Antonios Papaleonidas
出版社Springer Science and Business Media Deutschland GmbH
ページ113-125
ページ数13
ISBN(印刷版)9783031159367
DOI
出版ステータスPublished - 2022
イベント31st International Conference on Artificial Neural Networks, ICANN 2022 - Bristol, United Kingdom
継続期間: 2022 9月 62022 9月 9

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
13532 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference31st International Conference on Artificial Neural Networks, ICANN 2022
国/地域United Kingdom
CityBristol
Period22/9/622/9/9

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「JointFusionNet: Parallel Learning Human Structural Local and Global Joint Features for 3D Human Pose Estimation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル