Kendama learning robot based on a dynamic optimization theory

Hiroyuki Miyamoto*, Francesca Gandolfo, Hiroaki Gomi, Stefan Schaal, Yasuharu Koike, Rieko Osu, Eri Nakano, Yasuhiro Wada, Mitsuo Kawato

*この研究の対応する著者

研究成果: Paper査読

6 被引用数 (Scopus)

抄録

A general theory of movement pattern perception based on a dynamic optimization theory can be used for motion capture and learning by watching in robotics. We exemplify our methods for the game of Kendama, executed by the SARCOS Dextrous Slave Arm, which has exactly the same kinematic structure as a human arm. Three ingredients have to be integrated for the successful execution of this task. The ingredients were (1) to extract via-points from a human movement trajectory using a Forward-Inverse Relaxation Model, (2) to treat via-points as a control variable while reconstructing the desired trajectory from all the via-points, and (3) to modify the via-points for successful execution.

本文言語English
ページ327-332
ページ数6
出版ステータスPublished - 1995
外部発表はい
イベントProceedings of the 1995 4th IEEE International Workshop on Robot and Human Communication, RO-MAN - Tokyo, Jpn
継続期間: 1995 7月 51995 7月 7

Other

OtherProceedings of the 1995 4th IEEE International Workshop on Robot and Human Communication, RO-MAN
CityTokyo, Jpn
Period95/7/595/7/7

ASJC Scopus subject areas

  • ハードウェアとアーキテクチャ
  • ソフトウェア

フィンガープリント

「Kendama learning robot based on a dynamic optimization theory」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル