Kolmogorov-Arnold-Moser Stability for Conserved Quantities in Finite-Dimensional Quantum Systems

Daniel Burgarth, Paolo Facchi, Hiromichi Nakazato, Saverio Pascazio, Kazuya Yuasa

研究成果: Article査読

3 被引用数 (Scopus)

抄録

We show that for any finite-dimensional quantum systems the conserved quantities can be characterized by their robustness to small perturbations: for fragile symmetries, small perturbations can lead to large deviations over long times, while for robust symmetries, their expectation values remain close to their initial values for all times. This is in analogy with the celebrated Kolmogorov-Arnold-Moser theorem in classical mechanics. To prove this result, we introduce a resummation of a perturbation series, which generalizes the Hamiltonian of the quantum Zeno dynamics.

本文言語English
論文番号150401
ジャーナルPhysical Review Letters
126
15
DOI
出版ステータスPublished - 2021 4月 12

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「Kolmogorov-Arnold-Moser Stability for Conserved Quantities in Finite-Dimensional Quantum Systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル