Large and small covers of a hyperbolic manifold

Petra Bonfert-Taylor, Katsuhiko Matsuzaki*, Edward C. Taylor

*この研究の対応する著者

研究成果: Article査読

7 被引用数 (Scopus)

抄録

The exponent of convergence of a non-elementary discrete group of hyperbolic isometries measures the Hausdorff dimension of the conical limit set. In passing to a non-trivial regular cover the resulting limit sets are point-wise equal though the exponent of convergence of the cover uniformization may be strictly less than the exponent of convergence of the base. We show in this paper that, for closed hyperbolic surfaces, the previously established lower bound of one half on the exponent of convergence of "small" regular covers is sharp but is not attained. We also consider "large" (non-regular) covers. Here large and small are descriptive of the size of the exponent of convergence.We show that a Kleinian group that uniformizes a manifold homeomorphic to a surface fibering over a circle contains a Schottky subgroup whose exponent of convergence is arbitrarily close to two.

本文言語English
ページ(範囲)455-470
ページ数16
ジャーナルJournal of Geometric Analysis
22
2
DOI
出版ステータスPublished - 2012 4月
外部発表はい

ASJC Scopus subject areas

  • 幾何学とトポロジー

フィンガープリント

「Large and small covers of a hyperbolic manifold」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル