Large regular Lindelöf spaces with points Gδ

Toshimichi Usuba*

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

By analyzing Dow's construction, we introduce a general construction of regular Lindelof spaces with points Gδ. Using this construction, we prove the following: Suppose that either (1) there exists a regular Lindel of P-space of pseudocharacter ≤ ω1 and of size > 2ω, (2) CH and (ω2) hold, or (3) CH holds and there exists a Kurepa tree. Then there exists a regular Lindel of space with points Gδ and of size > 2ω. This shows that, under CH, the non-existence of such a Lindel of space has a large cardinal strength. We also prove that every c.c.c. forcing adding a new real creates a regular Lindel of space with points Gδ and of size at least (2ω1 )V.

本文言語English
ページ(範囲)249-260
ページ数12
ジャーナルFundamenta Mathematicae
237
3
DOI
出版ステータスPublished - 2017

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「Large regular Lindelöf spaces with points Gδ」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル